If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-166x+256=0
a = 25; b = -166; c = +256;
Δ = b2-4ac
Δ = -1662-4·25·256
Δ = 1956
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1956}=\sqrt{4*489}=\sqrt{4}*\sqrt{489}=2\sqrt{489}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-166)-2\sqrt{489}}{2*25}=\frac{166-2\sqrt{489}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-166)+2\sqrt{489}}{2*25}=\frac{166+2\sqrt{489}}{50} $
| -23+5x=-13-x | | 50x=600+x² | | 2(p-3)+8=10,p= | | 2.72^(x+2)=24 | | −2x−19=6x+29. | | -x²=600-50x | | 5*2.72^(x+2)=120 | | -4+7X=9x-8 | | 8x=-150 | | 2,5x-x+3,8x+0,7x=0,54 | | -x²+50x-400=200 | | 4x^2+24x+26=0 | | 9x+27=3x-27 | | 31/4+1/2y+11/3+5/6y=511/12 | | x^2+4x+5=(x+2)(x+7) | | 16k^2-108k+64=0 | | 3m+4m=35 | | 50-2(x+7)^2=0 | | 11x+3-2x=21 | | 50-2x=40-x | | 16x-34=11x+26 | | 4(5x–6)–7=4–5(6x–7) | | 8m-24=33 | | 3x+5x=12+2x | | 6x+4x+5=25 | | Y^2-12y=-18 | | 4x-2x=6+7 | | {2x}=0.1 | | _x13-7=110 | | X+100=6x-100 | | Y2-12y=-18 | | X^2+6x-1332=0 |